
Abstract. The ®rst two orders of bridge diagrams, those
with two and three ®eld points, have been calculated
exactly for the Lennard-Jones ¯uid for several isotherms.
The method of calculation was one of expansion in
Legendre polynomials, and the dependence of the
method on the number of polynomials needed for
accurate results was investigated. Thermodynamic and
structural properties of the Lennard-Jones ¯uid calcu-
lated from integral equation methods with the inclusion
of bridge diagrams were found to be systematically
improved. Two attempts at predicting the missing bridge
diagrams of even higher order were discussed. The ®rst,
which uses the functional form of those diagrams that
were calculated exactly, showed no signi®cant improve-
ment. The second, a series sum based on the ®rst two
orders of calculated diagrams and motivated by the
success of a similar heuristic sum in the case of hard
spheres, was extremely successful. When the series sum
was employed, thermodynamic and structural quantities
were improved to the point where the di�erence between
simulation results and integral equation results was of
the same order as the error in the simulations them-
selves.

Key words: Fluids ± Integral equation methods ± Radial
distribution function

1 Introduction

The study of statistical mechanics of liquids and liquid
mixtures contributes increasingly to the understanding
of many chemical systems of current interest, particu-
larly those of a biological nature [1±6]. While simulation
methods have commanded the attention of most investi-
gators in recent years, there has remained a niche for
approximate integral equation methods because of the
relatively low computational resources required.

The reasons for the dominance of simulation over
more theoretical approaches are several. Historically,
simulation results have been more trusted since a careful
simulation of a simple ¯uid model involving no long-
range forces gives results essentially exact for the model
[7]. The approximations involved in integral equation
methods lead, in a small but su�cient number of cases,
to poor results [7]. In addition, there is no truly satis-
factory theory for molecular models, since those which
approximate simulation results most reliably have cele-
brated formal de®ciencies [8, 9]. It is also assumed, be-
cause of the problems with theoretical methods, that the
superiority of simulation results will hold for very
complicated systems where the simulations are not exact,
although this remains largely unproven. Despite the
problems with theories, there are many areas where they
have given useful contributions. In addition, because
they are based on ®rst principles, it is clear that they
would have wider use and acceptance if the results were
exact, or at least if the approximations were less severe.

The problem of calculating highly accurate radial
distribution functions from integral equation methods is
one of computational tractability; the exact formal
mathematical expression is known [7, 10]. An exact ra-
dial distribution function for a ¯uid can be written as a
virial expansion in function-valued integrals, or dia-
grams. Integral equation theories divide these diagrams
into subsets and express relations between the subsets in
terms of the pair functions for the ¯uid. There is, how-
ever, one subset of diagrams known as bridge diagrams
for which a simple expression in terms of pair functions
does not seem possible. Usually these bridge diagrams
are either ignored completely or approximated by other
expressions. The additional computational e�ort re-
quired to exactly calculate the single bridge diagram of
lowest order in density is at least double that of the
problem without such improvement. As with all virial
expansions, there are an in®nite number of these dia-
grams, and there appears to be no recursive or iterative
method for obtaining them all. There has, however, been
no shortage of attempts to use approaches which either
directly or indirectly approximate them [11±18]. Because
of the di�culty in ®nding a method of systematic im-
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provement to integral equation theories, development
e�orts have focused on adding expressions which correct
at least one known problem, such as thermodynamic
inconsistency [12, 14, 16±18] or dielectric inconsistency
[19, 20]. Unfortunately, such approaches are either ad
hoc or are corrections which cannot remedy all the
problems of the method to which they are applied. Also,
they are not generally transferable to other systems,
while they may work well in one speci®c group of cases.

In the search for a general theoretical method of
calculating accurate radial distribution functions there
appears to be no substitute for directly evaluating at
least some bridge diagrams. When one considers that
computers have increased several orders of magnitude in
speed since currently used equation systems became es-
tablished, arguments of computational tractability have
lost, and continue to lose, impact. It is also becoming
much more common to improve the accuracy of long-
range interactions in already expensive simulations with
even more expensive approaches such as Ewald sums
[21±25]. Furthermore, the size, complexity and simula-
tion time of systems under consideration continues to
increase [24]. It should be noted that the computation
time used by a simulation grows as up to the square of
the number of molecules being simulated, whereas the
calculation of integral equation methods grows as the
square of the number of species present in the system.
These factors should ensure that the di�erence between
computational resources needed for simulations and
theories should become wider for future scienti®c in-
vestigations, even if some bridge diagrams are calculated.

Yet if the calculation of bridge diagrams is justi®able
on a cost basis, it is still only worthwhile if the results are
truly improved. The purpose of this study is to show the
improvement in structure and thermodynamics of a
system of pure Lennard-Jones spheres obtained by in-
cluding all the four- and ®ve-point diagrams in the
bridge function. The formalism for the calculation of
these diagrams in terms of expansions in Legendre
polynomials was derived by Attard and Patey [10] and
tested for a convenient, but less chemically useful model
[26]. We have made a few small changes to the formalism
(for computational convenience only) and so reiterate it
here in Sect. 2, as well as restate in summary the integral
equation system we wish to solve. Since this paper rep-
resents the ®rst application of the formalism to a soft
sphere model that can accurately represent a chemical
system, part of what follows (Sect. 3) will show that
indeed such diagrams can be calculated by this method.
In Sect. 4 we then consider the accuracy of the results by
examining thermodynamic and structural quantities and
comparing them to simulation. We also examine two
methods of approximating the in®nite series of diagrams
which are still missing from an exact solution, based on
the diagrams we have explicitly calculated. Section 5
contains a summary and the main conclusions.

2 Theory

2.1 The pair functions

The expression of pair functions in terms of diagram-
matic expansions has appeared before in many contexts
and will be summarized here using standard terminology
[7]. All pertinent pair functions can be expressed as
in®nite sums of diagrams consisting of two root points,
density ®eld points and bonds. No diagram contains an
articulation point. The bonds represent Mayer f func-
tions, eÿbu�r� ÿ 1, where u�r� is the pair potential and
b � 1=kBT , with kB, T and r being the Boltzmann
constant, the absolute temperature and the interparticle
distance, respectively. The sum of all such connected
diagrams is an expression of the total correlation
function h�r� � g�r� ÿ 1, where g�r� is the radial distri-
bution function. A subset of the diagrams of h�r�,
formed by removing all those diagrams with nodal
points, is an expression of c�r�, the direct correlation
function. A di�erent subset of the diagrams of h�r�,
which expresses w�r�, is formed by removing all
diagrams with no ®eld points or where the root points
form an articulation pair. The function ÿw�r� is the
excess potential of mean force. These subsets of the total
correlation diagrams all contain an in®nite number of
diagrams, and all converge to bounded functions for
physically meaningful systems. The functions which
represent them are related by

w�r� � bu�r� � ln g�r�; �1a�
and

h�r� � c�r� � qc�r� � h�r�; �1b�
where the � represents a convolution and q the number
density. Equation (1b) is known as the Ornstein-Zernike
equation [27]. Equations (1a) and (1b) are not su�cient
to solve the system of equations since we have two
equations in three unknown functions. Another expres-
sion, known as a closure, is also necessary. An exact
closure can be written

w�r� � t�r� � d�r�; �2�
which represents the separation of the diagrams of w�r�
into those with nodes, t�r� � h�r� ÿ c�r�, and those
without nodes, d�r�, the bridge diagrams. The bridge
diagrams are highly connected and apparently cannot be
evaluated simply. Fortunately there are relatively few of
them, so setting d�r� � 0 should not be expected to be a
drastic approximation. The result is the hypernetted-
chain (HNC) equation which is easily obtained from
Eqs. (2) and (1a) and can be written [7]

c�r� � h�r� ÿ bu�r� ÿ ln g�r�: �3�
A well-known closure can be derived by taking the
bridge function

d�r� � ln 1� t�r�� � ÿ t�r�; �4�
which leads to the closure known as the Percus-Yevick
(PY) equation [28],

c�r� � 1� t�r�� �eÿbu�r� ÿ t�r� ÿ 1: �5�
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Once the g�r� function for a given closure has been
calculated, the excess internal energy per particle can
easily be evaluated via

bU ex

N�
� 2pq

Z 1
0

r2g�r�bu�r�dr; �6�

and the isothermal compressibility factor by

bP
q
� 1ÿ 2

3
pbq

Z 1
0

r3g�r� du�r�
dr

dr; �7�

where P indicates system pressure.
The pair potential used for this work has the standard

Lennard-Jones form,

u�r� � 4�
r
r

� �12
ÿ r

r

� �6� �
�8�

where r and � are the distance and well-depth para-
meters. Any phase point in a system of pure Lennard-
Jones (LJ) spheres can be completely designated by the
reduced temperature and density variables T � � 1=b�
and q� � qr3 [7].

2.2 The evaluation of bridge diagrams

What follows is a summary of the derivation of several
expressions given fully in reference [10]. Expressions for
the ®rst two orders of bridge diagrams are rewritten in
computationally tractable form. The simpli®cation em-
ploys the method of expansion of angular dependent
integrals in Legendre polynomials used quite widely in
di�erent contexts [29±31].

The function d�r�, like all the pair functions, can be
expressed as a virial series:

d�r� � q2d�2��r� � q3d�3��r� � � � � : �9�
Each term in the series represents the sum of diagrams
with a ®xed number of ®eld points, indicated by the
superscripts. No bridge diagrams exist for lower orders
of density, d�2��r� represents a single diagram, and d�3��r�
represents the sum of 13 diagrams (Fig. 1).

The only diagram of d�2��r� is

d�2��r� � 1

2

Z
dr3dr4f �r3�f �r4�f �r23�f �r24�f �r34�

� p
Z 1
0

dr3r23

Z 1
0

dr4r24

Z p

0

dh3 sin h3

Z p

0

dh4 sin h4

�
Z 2p

0

d/34f �r3�f �r4�f �r23�f �r24�f �r34�; �10�

where r1 is chosen as the origin and r2 is aligned
with the positive z axis; h3 � h23; h24 � h4; rij �������������������������������������������������

r2i � r2j ÿ 2rirj cos hij

q
and cos h34 � cos h3 cos h4 �

sin h3 sin h4 cos/34: The details of the simpli®cation of
Eq. (10) are given elsewhere [10], but the general pro-
cedure is to expand each angular dependent function in
the integrand in a series of Legendre polynomials and
apply well-known mathematical relationships to simplify
to an expression which can be written in terms of the

coe�cients of the expansions only. The coe�cients can
be expressed as

f̂n�ri; rj� � 2n� 1

2

Z 1

ÿ1
dxPn�x�f

�������������������������������
r2i � r2j ÿ 2rirjx

q� �
; �11�

where x � cos h, and the ®nal expression desired is

d�2��r� � 2p2
X1
n�0

2

2n� 1

� �2Z 1
0

dr3r23f �r3�

�
Z 1
0

dr4r24f �r4�f̂n�r2; r3�f̂n�r2; r4�

� f̂n�r3; r4�: �12�
The 13 diagrams of d�3��r� are most conveniently re-

arranged into three groups, each of which is evaluated
separately. The ®rst group, consisting of four diagrams
and designated d�31��r�, is reduced to the sum of two
contributions. Each contribution is formally the same as
d�2��r� if one employs h�1��r� � e�r��f �r� � f �r�� bonds to
simplify the topology of the diagrams. We will write the
two contributions separately here with notation which
keeps track of which ®eld points in the original ®ve-
point diagrams correspond to the ®eld points in the

Fig. 1. The bridge diagrams of orders q2 and q3 and the functions to
which they add. The open circles represent root points and the solid
circles ®eld points to be integrated. The solid lines represent Mayer f
bonds, the dashed lines represent h�1� bonds and the long-dashed lines
represent e bonds
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completely connected four-point diagram. For mixtures
with more than one component at ®nite concentration
the number of bridge diagrams with the same topology
but di�erent valued f bonds increases dramatically.
Therefore, to avoid unnecessary complication in the
counting of such diagrams it will be necessary to have all
component functions of d�3��r� agree on which species is
referred to by each of the three ®eld points in a ®ve-point
diagram. This is unnecessary if the ®eld points can only
represent one species, such as in this work or in Ref. [10],
but we forgo the simpli®cation here for completeness
and with a view to subsequent work. We write the two
contributions to d�31��r� as

d�31�a �r� � 4p2
X1
n�0

2

2n� 1

� �2Z 1
0

dr4r24f �r4�

�
Z 1
0

dr5r25h�1��r5�f̂n�r2; r4�f̂n�r2; r5�f̂n�r4; r5�
�13�

and

d
�31�
b �r� � 4p2

X1
n�0

2

2n� 1

� �2Z 1
0

dr3r23f �r3�

�
Z 1
0

dr5r25f �r5�f̂n�r2; r3�f̂n�r3; r5�ĥ�1�n �r2; r5�;�14�
where

h�1��r5� � e�r5��f �r13� � f �r35�� �15a�
and ĥ�1�n �r2; r5� represents the polynomial coe�cients
(Eq. 11) in the expansion of

h�1��r25� � e�r25��f �r24� � f �r45��: �15b�
The second contribution to d�3��r� is the single dia-

gram indicated in Fig. 1,

d�32��r� �
Z

dr3dr4dr5f �r3�f �r5�f �r2; r4; h4�f �r2; r5; h5�
� f �r3; r4; h34�f �r3; r5; h35�f �r4; r5; h45�; �16�

which, when simpli®ed in a similar manner in terms of
the coe�cients of Legendre polynomials, is

d�32��r� � �2p�3
X1

l;m�0

2

2l� 1

2

2m� 1

Z 1
0

dr3dr4dr5r23r24r25

� f �r3�f �r5�f̂m�r2; r4�f̂m�r2; r5�f̂l�r3; r4�

� f̂l�r3; r5�
Z 1

ÿ1
dxPl�x�Pm�x�f �r4; r5; x�: �17�

The ®nal contribution to d�3��r� consists of the sum of
the eight remaining bridge diagrams with three ®eld
points and can be written

d�33��r� �
Z

dr3dr4dr5f �r3�f �r4�f �r2; r3; h3�f �r2; r4; h4�

� f �r3;r5; h35�f �r4; r5; h45� 1
2

e�r5�e�r2; r5; h5�
�

� e�r3;r4; h34� ÿ 1

3
f �r5�f �r2; r5; h5�f �r3; r4; h34�

�
: �18�

As shown in Fig. 1, the eight diagrams can be written as
a sum of two completely connected diagrams in terms of
e and f bonds. After signi®cant manipulation, Eq. (18)
can be shown to be equal to the expansion

d�33��r� � 16p3
X1

lmn�0

Xmin�lmn�

l0�0

0Z 1
0

dr3dr4dr5r23r24r25f �r3�

� f �r4�f̂l�r3; r5�f̂m�r4; r5�F l0
ln�r2; r3�F l0

mn�r2; r4�

� 1

2
e�r5�ên�r3; r4�El0

lm�r2; r5�
�
ÿ 1
3

f �r5�f̂n�r3; r4�F l0
lm�r2; r5�

�
; �19�

where

F l0
ln�r2; r3� � Wll0Wnl0

Z 1

ÿ1
dx3f �r2; r3; x3�P l0

l �x3�P l0
n �x3�;

�20�

Wln �
������������������
�lÿ n�!
�l� n�! ;

s
�21�

ên�r3; r4� � f̂n�r3; r4� � dn;0; �22�

El0
lm�r2; r5� � F l0

lm�r2; r5� �
2

2l� 1
dl;m; �23�

the P l
n�x� are associated Legendre functions, and the

prime on the second summation in Eq. (19) means that
the l0 � 0 term should be multiplied by 1/2.

The ®nal function we require for the exact sum of the
bridge diagrams of third order in density is

d�3��r� � d�31�a �r� � d
�31�
b �r� � d�32��r� � d�33��r�: �24�

3 The convergence of Legendre expansions

In the calculation of Eqs. (13), (14), (17) and (19) both
the evaluation of Legendre expansion coe�cients and
the integration over radial variables were evaluated
using gaussian quadrature [32, 29]. If the trapezoidal
or a higher-order rule needing a similar number of
evaluation points had been used for integrating the
radial variables, su�cient accuracy would have required
signi®cantly more computation time. Since the two types
of integration necessary are quite distinct, the polyno-
mial order (N1) used to evaluate the expansion coe�-
cients f̂n�ri; rj� and F l0

ln�r2; r3� is varied independently of
the polynomial order (N2) used to evaluate the integrals
over the radial variables r3; r4 and r5. The weights and
zeros needed for the quadratures were calculated and
tested using standard methods [33].

The expressions given above and the programming
have been checked against the analytical results for the
gaussian model given in Ref. [26], and agreement of
eight ®gures was easily obtained when the analytical
form of h�1��r� was used in the calculations. For a Len-
nard-Jones potential, however, a numerical convolution
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is required in the calculation of h�1��r� and su�cient
accuracy is more di�cult to achieve. In the numerical
evaluation of the h�1��r� functions, the forward trans-
form of the f bonds was done using a fast Fourier
transform (FFT) [33] with 217 points spaced evenly over
a range of 8:5 r. Since only relatively few evaluated
function values are required for h�1��r�, and since it is not
possible to have all the required gaussian quadrature
points exactly aligned with any FFT grid spacing cho-
sen, the back transform was calculated using a standard
Fourier integral for each function value required. This
method provided four to ®ve digits of agreement with
the gaussian model. The h�1��r� values can be precalcu-
lated before the main integration loops.

It remains to be shown that d�2��r� and d�3��r� can be
calculated with values of N1 and N2 su�ciently small
that numerical calculation is practical. For each of the
values of the reduced temperature T � � 2:74 and
T � � 1:35, the functions d�2��r� and d�3��r� were evalu-
ated for all possible combinations of N1 � 8; 16; 32; 64
andN2 � 8; 16; 32; 64; 128, except for the case of d�3��r�
withN1 � 64 andN2 � 128, for which it was estimated
that calculation would require >36 h per point on a 175-
MHz Digital Alpha workstation. Since the convergence
pattern for d�2��r� and d�3��r� was so similar for all other
orders, only the calculation of a few sample points was
attempted. As expected, the convergence of the results
for both d�2��r� and d�3��r� with respect to the polyno-
mial order N1 is quite independent of the convergence
with respect to the polynomial orderN2. An example of
each type of convergence is given in Fig. 2a, b. Figure 2a
shows the d�2��r� results forN1 � 32 and all considered
values of N2. While it is clear that N2 � 8 and 16 are
unacceptable, the results for N2 � 64 and 128 are vir-
tually indistinguishable. They agree to at least two sig-
ni®cant ®gures everywhere. Figure 2b shows the result
forN1 � 8; 16; 32 and 64 whileN2 is held ®xed at 128.
Again, at least two-digit agreement everywhere is found
for the two highest orders of N1. Figure 2c gives the
results for d�3��r� corresponding to those of d�2��r� in
Fig. 2a, and the convergence pattern is almost identical.
Furthermore, the convergence pattern for each type of
integration was una�ected by doubling the value of the
Lennard-Jones well depth (not shown). The increase in
computation time goes as N5

1 for d�3��r�, a function
which is an order of density less signi®cant than d�2��r�.
Since the di�erence in results forN1 � 16 andN1 � 64
(in combination with any value of N2) is <3% every-
where that the corresponding g�r� is not identically zero,
the bene®t of spending the extra time on a slightly more
accurate d�3��r� function will probably not be worth the
small change in any system functions or thermodynamic
values obtained. Converged system solutions can there-
fore be found using N1 � 32 for d�2��r�, N1 � 16 for
d�3��r�, andN2 � 64 for all calculations using potential
functions similar to those examined here.

4 Results and discussion

The results presented below are all calculated for a
system of pure LJ spheres. Integral equation results are

calculated by standard iterative methods [7]. All func-
tions were calculated with 2048 evenly spaced points at a
grid spacing of r=60. Sample calculations using a halved
grid spacing and doubled range were found to leave the
thermodynamic quantities and radial distribution func-
tions unchanged to four and six digits, respectively. The
functions d�2��r� and d�3��r� for T � � 2:74 and T � � 1:35
were evaluated at each grid point using the converged
values of N1 and N2 to a range of 4:5 r. Extension of
these functions to longer range left the thermodynamic
quantities that depend on them unchanged to six digits.
Following Ref. [10] we refer to the calculations per-
formed using the bridge function

d�r� � q2d�2��r� �25�
with Eqs.(1a, b) and (2) as the HNCD2 result, and that
calculated using

d�r� � q2d�2��r� � q3d�3��r�; �26�
together with the same equations, as the HNCD3 result.
In order to compare radial distribution functions to

Fig. 2 a The function d�2��r� for T � � 2:74 usingN1 � 32. The solid
line represents N2 � 128, the dotted line N2 � 64, the dashed line
N2 � 32, the long-dashed line N2 � 16 and the dot-dashed line
N2 � 8. b The function d�2��r� for T � � 2:74 usingN2 � 128. The
solid line represents N1 � 64, the dotted line (which is virtually
superimposed on the solid line) N1 � 32, the dashed line N1 � 16
and the long-dashed lineN2 � 8. c The function d�3��r� for T � � 2:74
usingN1 � 32. The line types represent the same values ofN2 as in a
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simulation, two molecular dynamics (MD) trajectories
for the phase points (T � � 2:74; q� � 1:0) and (T � �
1:35; q� � 0:7) were calculated in the NVT ensemble
using standard methods [34]. For both simulations a
square box of length 10 r was used. The calculations
spanned 25,000 time steps for a total of 500 ps with a
radial cuto�, rc, at slightly less than half the box length,
4:2 r. The ®rst-phase point calculation used 1000 LJ
spheres and resulted in values of excess internal energy,
U ex=N�, and isothermal compressibility factor, bT=q, of
ÿ4:219 and 7:307, respectively. The second-phase point
calculation used 700 LJ spheres and resulted in the
values U ex=N� � ÿ4:665 and bT=q � 1:205.

4.1 Thermodynamic quantities

Tables 1 and 2 contain the thermodynamic results of
integral equation calculations for the HNC, HNCD2,
HNCD3 and PY theories, as well as the Monte Carlo
(MC) simulation results reproduced in Ref. [7] for
comparison. The results presented for the HNC and PY
closures di�er slightly from those reported in Ref. [7].
The latter can be duplicated almost exactly by using
a coarser grid and shorter range of 512 points with a
grid spacing of r=50. The results from MD and MC
calculations also di�er well outside the range of
statistical error reported for both calculations. Besides
the methods themselves, there are two di�erences
between the simulations. The ®rst is the method of
correcting the tail beyond the point where the potential
interaction is cut o�. The MC calculations assume
g�r� � 1 and apply the integrals in Eqs. (6) and (7) from
the cuto� radius outwards. The MD result calculated
here applied the same equations but uses the g�r�
function from an HNC calculation beyond the cuto�

radius. This accounts for about 30% of the di�erence
between MC and MD results. The remainder must be
due to the di�erence in cuto� radius for the calculations.
The MC result used rc � 2:4 r, whereas the MD uses
rc � 4:2 r. While these di�erences in thermodynamic
quantities are not large, many of the integral equation
results fall within this wider bound of error. Using the
statistical error alone to evaluate the precision of
simulation results can thus be misleading when judging
the veracity of theoretical results.

The HNC values for excess internal energy (Table 1)
are overestimates for higher densities and underesti-
mates for lower densities, with the crossover point in the
range 0:50 < q� < 0:55 for the T � � 1:35 isotherm and in
the range 0:30 < q� < 0:40 for the T � � 2:74 isotherm.
The HNCD2 and HNCD3 each represent successive
improvements in the energy values, no matter whether
the direction of improvement is to higher or lower val-
ues. Furthermore, while these improvements always
move toward the simulation result, they do not pass it.
The PY energy results are clearly superior to the HNC
results at all phase points calculated except one. The PY
results are also closer to the MC than all but three of the
HNCD3 results, but it should be noted that the
HNCD3, PY and MC results are most often within a
range similar to that of the di�erence between the two
types of simulation compared above.

Similar systematic improvements to the isothermal
compressibility factor from the HNC theory can be
achieved by employing the bridge diagram functions
d�2��r� and d�3��r�. For all points on the phase diagram
investigated, the results for the HNC theory were all too
large (Table 2) and all were successively reduced towards
the MC values. For these quantities, however, in the case
with the strongest interaction between LJ spheres, T � �
1:35, the HNCD3 results surpass those of the PY theory
for all but the highest density.

Table 1. Excess internal energies per particle, U ex=N� from MC

simulation [7] and various integral equation theories

T � � 1:35

q� MC HNC HNCD2 HNCD3 HNCS PY

0.70 )4.684 )4.524 )4.548 )4.568 )4.656 )4.625
0.65 )4.343 )4.259 )4.276 )4.290 )4.341 )4.322
0.55 )3.704 )3.678 )3.683 )3.686 )3.691 )3.695
0.50 )3.372 )3.378 )3.377 )3.377 )3.371 )3.382
0.45 )3.030 )3.081 )3.075 )3.072 )3.061 )3.073
0.40 )2.747 )2.792 )2.781 )2.776 )2.763 )2.773
0.35 )2.405 ± )2.468 )2.488 )2.477 )2.480
0.30 )2.090 ± ± ± )2.167 )2.188

T � � 2:74

q� MC HNC HNCD2 HNCD3 HNCS PY

1.00 )4.180 )3.259 )3.338 )3.475 )4.137 )4.582
0.80 )4.281 )3.847 )3.907 )3.980 )4.196 )4.306
0.70 )3.902 )3.691 )3.734 )3.779 )3.884 )3.931
0.55 )3.207 )3.127 )3.147 )3.163 )3.189 )3.200
0.40 )2.371 )2.353 )2.358 )2.361 )2.365 )2.368
0.30 )1.783 )1.787 )1.788 )1.789 )1.790 )1.791

Table 2. Isothermal compressibility factors, bP=q from MC simulation

[7] and various integral equation theories

T � � 1:35

q� MC HNC HNCD2 HNCD3 HNCS PY

0.70 1.166 2.097 1.926 1.783 1.145 1.697

0.65 0.850 1.500 1.351 1.235 0.769 1.262

0.55 0.415 0.758 0.653 0.581 0.357 0.695

0.50 0.303 0.560 0.475 0.421 0.275 0.534

0.45 0.280 0.444 0.377 0.339 0.249 0.436

0.40 0.272 0.389 0.339 0.313 0.261 0.388

0.35 0.298 ± 0.340 0.327 0.299 0.377

0.30 0.352 ± ± ± 0.353 0.396

T � � 2:74

q� MC HNC HNCD2 HNCD3 HNCS PY

1.00 7.388 9.147 8.976 8.699 7.419 6.698

0.80 3.604 4.540 4.392 4.227 3.746 3.611

0.70 2.641 3.167 3.046 2.935 2.675 2.650

0.55 1.653 1.903 1.830 1.780 1.698 1.724

0.40 1.199 1.280 1.247 1.232 1.215 1.235

0.30 1.040 1.084 1.069 1.064 1.060 1.070
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Another interesting consequence of the addition of
bridge diagrams for systems with T � � 1:35 and
q� < 0:40 is that solution to the corrected HNC equation
is now possible, at a lower density, where previously the
HNC equation results did not give a solution. The lack
of solution is usually interpreted as the crossing of a
phase boundary, in this case the well-known separation
of the liquid and gas phases of the Lennard-Jones ¯uid
[35]. The HNC theory appears to misplace the phase
boundary to a position of higher density on the phase
diagram. The HNCD2 and HNCD3 theories appear not
only to improve the thermodynamic quantities of the
HNC, but also to move the position predicted for the
liquid-gas phase boundary toward that which is correct
for the model.

The HNCS results, which employ a heuristic series
based on d�2��r� and d�3��r� to approximate the missing
in®nite series of bridge diagrams of density order 4 and
higher, are also shown in Tables 1 and 2 and will be
discussed below.

4.2 Radial distributions

When the radial distribution functions (RDFs) resulting
from the theories under consideration are plotted
together with the simulation result, the individual curves
are di�cult to distinguish, so instead we plot the
di�erence functions, Dg�r�, de®ned by

Dg�r� � gtheory�r� ÿ gsimulation�r� �27�
for each theory. We use the RDF from the MD
simulation performed for this work. The closer a result
for a given theory is to zero, the closer to exact for the
model it can be regarded. Figure 3a gives the Dg�r�
functions for the phase point �T � � 2:74; q� � 1:0�. As
with the thermodynamic quantities, the HNCD2 and
HNCD3 functions represent successive improvements to
the HNC function. The RDF from the PY has the
opposite deviation from the simulation to the HNC
everywhere, which demonstrates a case where attempts
to improve theories by taking a weighted average of
HNC and PY would be reasonably successful. By
contrast, such an approach would not be expected to
work well for the phase point �T � � 1:35; q� � 0:7� (Fig.
3b), where all deviations are in the same direction. Even
if a negative coe�cient for one of the PY and HNC
functions were used in such an attempt, the result is
unlikely to be satisfactory because the two functions are
signi®cantly out of phase with each other.

The statistical `noise' from the simulation has not
been subjected to any smoothing procedure and is evi-
dent in these results, particularly those of Fig. 3b, where
the deviations are roughly half those of Fig. 3a. The
statistical noise was not removed in order to demon-
strate that the deviations from exactness from theories
are less than an order of magnitude greater than the
errors in even well-converged simulations, except at the
highest densities.

The HNCS radial distributions are discussed in the
next section.

4.3 Estimating the missing diagrams

While the HNCD2 and HNCD3 approximations to the
missing bridge diagrams improve the HNC results
everywhere, it has been found for hard spheres [10] that
even greater improvement can be achieved by using the
bridge functions d�2��r� and d�3��r� to estimate missing
terms in the d�r� series (Eq. 9) of higher order in density.

The simplest estimate can be created by assuming that
those bridge functions calculated provide the correct
functional form, and that we can improve the result by
simply adjusting the magnitude using a coe�cient, Cff .
The coe�cient must depend on q since at the limit of
small q it must approach 1, and it cannot have that value
everywhere. If the coe�cient is to be useful it must have
little or no dependence on T �, since such a dependence
would not be simple if the estimate were applied to
mixtures. We therefore assume that Cff depends on q
only and write

d�r� � Cff �q� q2d�2��r� � q3d�3��r�
h i

: �28�
Using this functional form, it should be possible to ®nd
values of Cff which, when used to solve the correspond-
ing integral equation system, duplicate a given thermo-
dynamic quantity from a simulation. For each excess
internal energy and isothermal compressibility factor
value from MC simulations (Tables 1, 2) as well as those
from the MD simulations of this work, a value of Cff
was calculated which duplicated a single simulation
thermodynamic property to three digits, if such a
procedure was possible. There were a few cases where
it was not possible to duplicate a given simulation value,

Fig. 3 a The function Dg�r�, the di�erence between the result from
simulation and each theory. All calculations are for T � � 2:74 and
q� � 1:0. The solid line represents the HNC result, the dotted line
represents the HNCD2, the dashed line is the HNCD3 result and the
long-dashed and dot-dashed lines come from the PY and HNCS
calculations, respectively. b The function Dg�r� for T � � 2:74 and
q� � 1:0. The line types represent the same types of calculations as ina
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although it was always possible to get within the bounds
of error suspected for the simulation results (see above).
Each such value of Cff was given equal weight and
plotted against density in Fig. 4. A linear regression of
�Cff ÿ 1�=q� was then performed to evaluate the con-
stants in the equation

Cff �q�� � 1ÿ 0:086q� � 4:48�q��2; �29�
which is also plotted inFig. 4.While there appears to be no
strong dependence on T � and the ®tted function for Cff
seems quite promising, integral equation results using the
®tted Cff values were no improvement over the HNCD3
results. If a given energy was improved, then the
compressibility factor for that system was made worse,
or vice versa. The most troubling feature of this attempt
was, however, that even if the thermodynamics of a system
were acceptable or improved, the corresponding RDFs
inevitably deviated more strongly from the simulation
results than did the HNCD3 result. This functional form
approach also has no claim to exactness in all pair
functions up to order q3, unlike the HNCD3 closure.

While this functional form method was not a success,
it emphasized an important condition in the estimation
of approximate bridge functions. It appears to be ex-
tremely di�cult to optimize a function for a given
property of a system without losing accuracy in another
property. Improvement in several system properties at
once proves to be an extremely demanding criterion. If
such an estimate improves the thermodynamics and
structure of a system simultaneously, then it should
probably be regarded as quite close to the true total
bridge function, even if no direct evidence for such a
claim is available.

In Ref. [10], for the case of hard sphere systems, the
(1,2)-PadeÂ approximant

d�r� � q2d�2��r�
1ÿ qd�3��r�=d�2��r� �30�

proved to be just such an estimate, improving thermo-
dynamics and structure alike. It is unfortunate that this
approximation is impossible for Lennard-Jones systems.
There are two reasons why this is true. The ®rst is that
there are several values of r for which d�2��r� � qd�3��r�.
At such points there is a zero in the denominator of the
PadeÂ approximant. The second is that for most of the

range of r, jqd�3��r�=d�2��r�j > 1 and the PadeÂ approx-
imant, which is a type of functional geometric series,
does not converge.

The success of the PadeÂ approximant is quite
compelling, however, so we will attempt to extract the
essential features of it here in a way which can be used
for LJ spheres, and perhaps other types of potential
function as well. The problem of zeros in the
denominator can be addressed by noticing that both
d�2��r� andd�3��r�, in the approximate range 0 < r< 1:5 r,
are remarkably gaussian in form, and also that this
gaussian structure has an amplitude several orders of
magnitude larger than the rest of the function. Further-

more, the relationship d�3��0�=d�2��0� �
��������������
d�2��0�

q
, general

to all isotherms investigated, indicates that the geometric
series property of the hard sphere bridge functions is also
present at short range in the LJ sphere functions. We
therefore assume that the missing orders of bridge
functions, d�4��r�; d�5��r�; . . . ; will also be of gaussian
form at short range, and that this short-range part is
the most important feature of the bridge functions.
Unfortunately, since the gaussian part of d�3��r� is not
only of higher amplitude than that of d�2��r�, but also
of longer range, a geometric series of such functions
will not sum to a ®nite result, and we must force
convergence on the series. We therefore evaluate the
gaussian G�2��r� � A2eÿa2r2 � d�2��r� using the calcu-
lated function values at the two points r � 0 and
r � r, and do the same for G�3��r� � A3eÿa3r2 � d�3��r�.
We then de®ne the constants R � A3=A2 and
d � a3 ÿ a2 and de®ne the function series sum

ds�r� � q2d�2��r� � q3d�3��r��q2A2eÿa2r2
X1
2

�2Rq�n
n!

eÿndr2:

�31�
Each gaussian in the series is narrower than the previous
one by the constant d. This ensures that G�3��r� is the
widest gaussian and that the amplitudes decrease rapidly
as n becomes large. This series sum maintains the
exactness to order q3 of the HNCD3 closure by only
adding terms of order q4 or higher. The results of using
this estimated bridge function, which we call gaussian
series approximation (HNCS), are given in Tables 1 and
2. The HNCS thermodynamic values are superior to all
others, including the PY values, everywhere except a few
isolated cases where HNCS, PY and MC are all within
the tail correction error in the simulation results. The
HNCS Dg�r� functions given in Fig. 3a and 3b are
clearly closer to the zero than all others. In Fig. 3b the
error in the HNCS result is only 2 or 3 times the error
due to statistical noise from the simulation. In Fig. 5a
the HNCD3 and HNCS bridge functions are compared
for the two phase points �T � � 2:74; q� � 1:0� and
�T � � 1:35; q� � 0:7�. In both cases the addition of the
series of gaussians has greatly decreased the ®rst peak in
d�r� while leaving the second almost unchanged. The
RDFs which result from the HNCS closure are remark-
ably close to the simulation RDFs with all peaks at the
correct height and almost exactly in phase (Fig. 5b). The
only place where corresponding curves do not run

Fig. 4. The values of the functional form coe�cient necessary to
duplicate the thermodynamic quantities of simulation. The line is a
regression ®t to the data discussed in the text
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together is in the ®rst well near 1:5 r, but the di�erences
are small. Finally, the HNCS expression has made
solution of the integral equations at the point
�T � � 1:35; q� � 0:3� possible, further correcting the
position of the liquid-gas phase boundary.

5 Summary and conclusions

Bridge diagram integrals of the ®rst two orders of
density, d�2��r� and d�3��r�, have been evaluated exactly
for pure ¯uids of LJ spheres for several points on the
phase diagram. The bridge diagrams were evaluated
using the expansion in Legendre polynomials proposed
by Attard and Patey [10] for hard sphere ¯uids. The
convergence properties of the expansions in Legendre
polynomials, as well as the dependence on the number of
polynomials used for the gaussian quadrature of the
radial variables, were investigated. It was discovered that
convergences with respect to these two types of integra-
tion were independent of each other and of the well
depth of the LJ sphere potential function employed.
Furthermore, the converged functions can be calculated
within reasonable CPU times on a workstation.

The HNCD2 and HNCD3 integral equation theories
were found to systematically correct the thermodynamic
quantities and radial distributions of the HNC theory,
with the HNCD3 results being superior to the PY theory
results at some phase points. The addition of bridge
diagrams was also found to move the position of the
well-known liquid-gas phase separation, which is pre-

dicted at too high a density by the HNC theory, towards
its correct position.

An attempt was made to predict the missing bridge
diagrams of higher order by assuming the functional
form from the HNCD3 theory. It was found that while
some thermodynamic properties could be improved, it
was not possible to improve all thermodynamic and
structural properties at the same time. It was concluded
that any approximate bridge function that improves all
measurable criteria concurrently toward the corre-
sponding correct results is probably a good approxi-
mation to the correct total bridge function.

Following a successful method of predicting high-
order hard sphere bridge diagrams using a (1,2)-PadeÂ
approximant, we propose a series sum which uses the
short-range gaussian structure of the known bridge
diagrams to predict the diagrams which are not known.
The result, which we call the HNCS result, gives im-
proved thermodynamics and structure everywhere, sur-
passing the PY equation. The HNCS RDFs are virtually
indistinguishable from simulation RDFs. In most cases
the di�erence between simulation and theoretical result
is of the same order as the error in the simulations
themselves.

While this work is interesting simply as a contribu-
tion to the theory and statistical mechanics of ¯uids, it
should properly be regarded as a preliminary step in the
attempt to achieve accurate results for models of real
systems. While the only chemical systems which are
modeled well by pure LJ spheres are the noble gases [7],
the LJ interaction is used widely to model the short-
range repulsion and dispersive forces between the con-
stituent atoms in models of biological systems [36, 37]. It
will be most interesting to see whether similar im-
provements to theoretical results are possible in such
models. Future study in this area will need to build on
this work by examining mixtures, namely long-range
ionic and dipolar species as well as multi-atom molec-
ular species.
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